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The aim of these pages is to set out the author’s opinions about the best ways to deal with 
the most common issues in microarray data analysis. The opinions are based on 
experience with dozens of collaborating lab scientists, and discussions with microarray 
statisticians. Contributions, disputes, and opinions are welcome (and may be posted!). 
These pages are intended primarily for people working in a microarray facility. However 
I hope that statisticians and programmers will also find interesting material here. 

This guide is organized as follows 

General Issues  

Experimental design 

Distributions and transforms 

Approaches to Normalization 

Spotted Array Issues (two-color competitively hybridized microarrays) 

Image analysis for spotted arrays (not done) 

Quality control of spotted arrays 

Normalization of spotted arrays 

Affymetrix Issues 

Quality control  

Normalization  

Estimates of Abundance (methods for combining data from multiple probes to get 
single estimates) 

Downstream Analysis 

Graphics 

Clustering 

Statistical Significance 

 

For descriptions of the technology see TECH LINKS 



Design of Microarray Experiments 
  

How many replicates is enough? 

Should you pool samples? 

What is a good designs for a cDNA experiment with many samples? 
  
The design of scientific experiments is an art of balancing considerations: skill, cost, equipment, and 
accuracy. For a given question, there won’t be one ‘right’ design: you may choose different designs  
for the same scientific question in different contexts. Some important practical issues for microarray 
experiments are:  
1.how your experiment fits into a larger plan,   
2.how often your hybridizations fail, and 
3.how noisy your measures are.  
If your goal is to make a series of experiments and be able to make comparisons, ensure that the 
designs and conditions are similar. Conditions such as RNA preservation medium, the protocols of 
hybridization, and even environmental conditions, can introduce systematic biases comparable in 
size to the biological differences you wish to detect. Taking a great deal of care to standardize 
conditions will pay off in much higher discovery rates. To do a series of two-color hybridizations, 
you want to prepare enough common reference to serve for all experiments. 
Chip failures are frequent, some of the more efficient designs will lose much information if a single 
hybridization fails; you won't want to use those designs if you can’t set aside samples to be re-
hybridized quickly to chips from the same batch.  
Although replicates are costly, you can only estimate the variability by replicates. To be confident in 
your results, you should find out the variability of measures based on the chips and protocol you are 
using, or better, estimate this yourself. 

  

Designs for Two-Color Arrays 
The Reference Design is when each experimental sample is hybridized against a common reference 
sample. The Reference Design   
•extends easily to other experiments, if the common reference is preserved; 
•is robust to multiple chip failures, and makes it easier to replace failed chips; 
•reduces incidence of laboratory mistakes, because each sample is handled the same way. 

 
Figure 1. A reference design: the red and green arrows represent chips. 
  
The reference sample is used in many chips, therefore the reference mRNA needs to be abundant. 
When comparing treatment versus control samples the most natural reference is the wild type or the 
biological controls, which are often the most abundant. However design becomes more perplexing if 
the study involves several samples, and the aim is to compare each against all others; to do a separate 
chip for all possible contrasts will take too many chips. An alternative is a common reference 
obtained by mixing all samples. This enables samples to be compared with each other, at the cost of 



making indirect comparisons, which are less reliable. A mixed reference sample reduces the number 
of extreme gene ratios on each chip, which gives more accurate estimates since, extreme ratios have 
typically large errors. Some labs take this further and use a ‘universal reference’: a pool of mRNA 
derived from several standard different cell lines. Using a universal reference enables them to 
compare results for all their experiments.  
  
One complication in two-color arrays is that the two don't get taken up equally well, so that the 
amount of label per amount of RNA differs (dye bias). An early proposal to compensate for dye bias 
was to make duplicate hybridizations with the same samples using the opposite labeling scheme. For 
example, to compare two samples: A & B, make two arrays (or an even number), and hybridize them 
as follows: 
Array 1: A vs B ; Array 2: B .vs. A 
The intent was to compensate dye bias by averaging ratios from dye-swapped hybridizations. 
However dye bias is not consistent, and in practice the ratios in dye-swap experiments don’t 
precisely compensate each other. Normalization methods such as lowess give more consistent 
results, although dye-swapping makes it easier to compensate for dye-bias. However the dye-swap is 
the basis for most other efficient designs: the general principles of a good two-color design are that  
i) it should be balanced: every sample appears equally often in red and green;; 
ii) the samples whose ratios are most interesting should appear on the same chips most often. 
  
From a theoretical perspective, for comparing a number of samples of equal interest and high 
quality, a design that utilizes a large number of direct sample-to-sample comparisons is most 
accurate for the cost. The simplest of these is a ‘loop’ design: each sample is hybridized to each of 
two different samples in two different dye orientations. This design results in half the variance per 
estimate, because each sample occurs twice, rather than once; at the cost of only one more chip. The 
drawback is that if one chip fails, or is of poor quality, then the error variance for all estimates is 
doubled. 

 
Figure 2. A loop design: arrows represent chips with samples labelled as indicated. 
There are many efficient and robust designs based on ‘round-robin’ style contrasts where each 
sample is hybridized to a specific subset of all the others, in a balanced fashion. These designs are 
really most appropriate where all samples are equally important, and the experiment is not part of a 
longer series. 



 
Figure 3. A ‘round-robin’ style of design: this is easiest with an odd number of chips, but similar 
designs exist for even numbers also. 
  
A more common situation is parallel contrasts. For example to investigate the role of a receptor, one 
prepares wild-type and knockout animals, and then administers a ligand to half of each group, while 
giving a non-effective vehicle to the other half. Then there are four groups, and the contrast of 
interest is the difference between the effect of the ligand on WT and KO. A good design for this is: 
  
  
  

Pooling 
There is considerable disagreement about whether to pool individual samples, among practitioners 
and also among statisticians. Sometimes the amount of sample from any one individual sample is 
insufficient for hybridization and in that case, pooling is a practical necessity. In theory, if the 
variation of all genes were independent and approximately normally distributed, then pooling n 
independent samples would result in reduction of variance given by the formula:  

 
 

  
In practice the expression levels of many genes across samples have many more extreme values 
(outliers) than does the normal distribution. Some samples have levels of stress response proteins 
and immunoglobulins five to ten fold higher than typical. This can be due to many factors unrelated 
to the experimental treatment: for example, individual animals or subjects may be infected, or some 
tissue samples may be anoxic for longer periods than others. It is easier to detect this, and discard 
such a sample, if individual samples are hybridized. Finally if one pools samples, there is no way to 
estimate variation between individuals. For further information on excess variability between 
individuals, see Prichard et al “Project Normal”, PNAS (2002) 
  



Replicates 
The question of how many replicates to do depends on how small the differences are that you want 
to detect, and the noise level in your system. Different systems have different noise levels, and a 
simple way to estimate the noise is to do three or four replicate hybridizations. For a cDNA system 
we get useful information about the variability in gene measures from three pairs of replicate dye-
swap hybridizations (6 chips) using the same two (different) RNA samples.  
  
  
  
  
  



The Distribution of Microarray Intensities 
Before we start, a word about the distributions and transforms we use here. The distributions of gene 
expression measures are extremely skewed by statistical standards. Even after the log transform, 
which is the strongest skew-adjusting transform in regular use, the distribution of gene abundances 
remains visibly skewed. Two cautions should be drawn from this. First, it is generally a good idea to 
take a transform that makes variances of different variables equal. The log transform gets part-way 
there, but at the cost of introducing a very large variance at the lower end. Secondly some standard 
statistical procedures, such as linear models, depend sensitively on the assumption of normality. 
There does not appear to be any transform where this assumption holds very well. Hence statisticians 
have a preference for robust or non-parametric procedures. 
  
  
  
  
  
  
  
  
  
  
 
The first thing to notice is that most genes are expressed at very low levels; few genes are expressed 
at high copy number. In statistical jargon we say that the distribution is skewed to the right. 
Statisticians often deal with highly skewed data on a logarithmic scale; this transform often corrects 
the skew for microarray data. Normally the distribution of intensities appears roughly bell-shaped; 
however depending on the choice of genes, and the estimation algorithm used (eg. how background 
is handled, how the low abundance genes are estimated) the distribution of intensities from the 
microarray may appear double-peaked or skewed on a log scale.  
Note that the signals from the microarray are not direct measures of copy number, rather the signal 
from each gene probe is proportional to the copy number, but with a different proportion for each 
gene. Therefore we can't conclude from the graph that there are a small number of genes with a very 
low abundance, and quite a lot that are slightly more abundant.  
This shape of distribution is pretty common in microarray data. However the rise on the left doesn't 
immediately make sense, because we expect a most genes to be expressed at very low copy number, 
and fewer genes expressed at higher levels. The current best explanation for the distribution shape is 
that the signal for each gene is due to a combination of the hybridization of that gene, plus some non-
specific hybridization, from all the other similar sequences, or partial transcripts in the sample, plus 
noise: eg. dust particles, other labelled transcripts binding to streaks of other probe, etc. The amount 
of non-specific hybridization depends on the gene, but we think for most genes the amount of non-
specific hybridization has some bell-shaped distribution (probably not normal). From the number of 
genes in the left hand side of the peak, we get some estimate of how reliable our estimates are.  
  
  
  
  
  
  
  
  
  
  
  
  
  
  



  
 
Variation  
Let's distinguish technical variability, the typical differences between repeated measures on the same 
sample, from individual variation. Technical variation is due to differences in sample preparation,  
the course of hybridization, and other factors. This is usually what is called 'noise'. On top of that, 
different (healthy) individuals have consistently different patterns of gene expresssion. In 
experiments where several individuals, this may also be considered 'noise'.  
A common observation in biology is that noise increases with level. So the technical variation in a 
measure of a housekeeping gene is higher than that of a transcription factor.  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
The plot on the left shows a scatter plot of the same genes on two chips. The plot on the right shows 
standard deviations across chips as a function of the mean over all chips. 
  
Most statistical procedures depend on all genes being compared have comparable noise levels, and 
will give erroneous p-values if there is great discrepancy. Statisticians treat this problem with 
transforms, and a common choice is fractional power (eg. cube root) or logarithm transforms. The 
most common transform in microarray is the logarithm transform. This appeals to some because the 
fold change appears the same for all genes. It also compensates for the intensity dependent noise, but 
actually over-compensates. Noise at the lower end is now higher than noise at the upper end.  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
The plot on the left shows a scatter plot of the log intensities of genes on two chips. The plot on the 
right shows standard deviations of the log intensities across chips as a function of the log mean over 
all chips. 



  
At this point it is worth introducing a common device for displaying the comparison between two 
samples. The ratio-intensity plot (R-I plot). This is most convenient on a log scale because down-
regulations (ratios lower than one are represented symmetrically with ratios higher.  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
We might ask if there is a simple transform that makes noise comparable at all levels. There are such 
transforms, but they are not simple. Several research groups presented variance-stabilizing 
transforms in 2002. Their proposals are based on a model where the noise for each gene has an 
additive component (perhaps reflecting background), and a multiplicative component (reflecting 
hybridization fluctuations). The simplest model is: 
  
and this gives rise to a simple transform of this form: 
  

 
Although in principle one should be able to estimate the parameters empirically, in practice you 
often get better results from other choices, and the groups have published calibration algorithms. One 
practical advantage of displaying data on scale is that straight lines on a scatterplot statistically 
significant differences. 
A simpler approach is to try both a logarithm transform, and a cube-root transform; often one or the 
other will be almost as good as the variance-stabilizing transform. 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  



Normalization Approaches 
  

Why Normalize? 
Biologists have long experience coping with systematic variation between experimental conditions 
that is unrelated to the biological differences they seek.  However expression arrays have even more 
ways to vary systematically than measures such as rt-PCR. In practice methods that have worked 
well for these types of measures do not perform as well for microarray data, where there are many 
more dimensions of systematic differences observed.  
  
Normalization is the attempt to compensate for systematic technical differences between chips, to 
see more clearly the systematic biological differences between samples. Differences in treatment of 
two samples, especially in labelling and in hybridization, bias the relative measures on any two 
chips.  
  
To an astute observer of many microarray results, systematic non-biological differences between 
chips become apparent in several obvious ways 

•Total brightness differs 
•One dye seems systematically stronger than the other (in 2 –color systems) 
•Background is different 

Some causes of systematic measurement variation include: 
•Different amounts of RNA 
•One dye is more readily incorporated than the other (in 2 –color systems) 
•The hybridisation reaction may proceed more fully to equilibrium in one array than the 
other 
•Hybridisation conditions may vary across an array 
•Scanner settings are often different, and of course 
•Murphy’s Law             

  
In order to see real biological differences we attempt to compensate for these systematic differences 
in measurement. For convenience we will divide approaches into two types. Parametric approaches 
fit one (or sometimes two) parameter(s). Non-parametric approaches fit a curve (or a surface) usually 
the equivalent of 3 – 10 parameters.  
Although the principles are similar, the details of normalization for cDNA arrays differ from 
normalization for Affymetrix arrays. 
  
One early approach was to find a standard gene – preferably several genes – that are invariant across 
all chips or samples. This the commonsense approach, used routinely in rt-PCR. The standards 
people tried were ‘housekeeping’ genes – genes, required in all cell types – on the theory that they 
occur at nearly equal levels in all cells. This last assumption appears to be false:: housekeeping genes 
apparently vary substantially between cell lines, and certainly between cell types. See Novak et al, 
Genome Biology 2002. Perhaps several genes will be better indicators than one. Gene Logic has 
identified 100 genes that are the most constant in many cell types. They have not released the 
detailed results, but it appears that normalization by fitting these is still not as good as the best 
statistical techniques. The rest of this tutorial will describe these. 
  
Most approaches to normalizing expression levels assume that the overall distribution of RNA 
numbers doesn’t change much between samples, and that most genes change very little. The simplest 
approach posits that measures of most genes are proportional across any two different samples. This 
makes sense, since we are starting with equal quantities of RNA for the two samples we are going to 
compare, and, if the sizes of the RNA molecules are comparable, the number of RNA molecules 
should also be the roughly the same in each sample. Consequently, approximately the same number 



of labeled molecules from each sample should hybridise to the arrays and, therefore, the total 
hybridisation intensities summed over all elements in the arrays should be the same for each sample. 
For a series of chips, define normalization constants C1 , C2 , …, by: 

, and so on,  

where the numbers fi
gene are the fluorescent intensities measured for each gene on chip i. Then to 

normalize all the chips to a common total intensity K (e.g. the average or median total intensity 
among all the chips), for each chip i, divide all fluorescent intensity readings from chip i by Ci., and 
multiply by K. 

There are many variations on this type of normalization, including scaling the individual intensities 
so that the mean or median intensities are the same within a single array or across all arrays, or using 
a selected subset of the arrayed genes rather than the entire collection.  

  
Statistical approaches assume that most genes aren’t really changed across all the conditions. For 
most laboratory treatments this seems reasonable, although treatments affecting transcription or 
translation apparatus have systemic effects; also malignant tumours often have dramatically different 
expression profiles. Following the assumption, then some overall characteristic of the expression 
distribution, such as the mean or median, should really be the same for all chips; the goal of 
normalisation is to make them equal. An extension of this idea is that all quantiles of the 
distributions must be equal. 
  
  
We should keep in mind that normalization, like any form of data ‘fiddling’ adds noise (random 
error) to the expression measures. Statisticians try to balance bias and noise, and their rule of thumb 
is that it’s better to under-correct for systemic biases than to exactly match. How do you tell how 
much correction is enough? Generally one stops correcting when the estimated remaining bias 
reaches the noise level.  
  
  
  



Quality Control 
  
A lot of the messy business of statistics is cleaning up data. Although this is less exciting, it is no less 
important, than normalization and other processes. 
  

Wet Lab Quality Checks 
The best place to check quality is in the wet lab, before the measures are taken. Two standard checks 
are RNA quality and dye incorporation.  
Between the time that a sample is taken, and the time the RNA is extracted and purified, enzymes in 
the cell rapidly degrade mRNA by cutting it into shorter pieces. Most of these short pieces will 
hybridize more easily to several different probes, which distorts expression measures. One way to 
detect degraded RNA is to examine two abundant types of RNA – the 18S and 28S ribosomal RNAs. 
If the ribosomal RNAs are mostly intact they form two sharp peaks as the total RNA is washed 
through a gel. This may be done also with a commercial tool such as the Agilent BioAnalyzer. 
Since the measures depend directly on the how much of the labelling dye is present on a probe, it 
makes sense to check how well the label is incorporated in the sample. In practice the amount of 
label in different samples varies, especially for the red Cy-5 dye.  Microarray technicians have often 
observed that the Cy5 label is taken up poorly in hot humid summers. A commercial product to 
measure how much label is incorporated in the sample is the NanoDrop Probe. 
Since it is much more trouble to detect and correct problems after the hybridization, it is worth the 
effort to check for hybridization problems in the lab. You may discard chips with very problematic 
hybridizations. You should do this before testing your favorite hypothesis; in the real world, you 
often do it interactively as you find faults with chips that don’t fit your ideas so well. 
  
Controls 
If the wetlab measures are good, then the best further information about how even and specific the 
hybridization process was comes from the controls. There’s no excuse any more for chips without a 
well-designed set of control probes. Negative controls are probes designed for DNA sequences that 
should never occur in your sample. Positive controls are multiple probes for sequences that should be 
abundant. Both positive and negative controls should be distributed over the chip. Spike-in controls 
are probes for transcripts not expected in your sample but added (in known amounts) in the 
hybridization mix.  
After the wet-lab the next line of defence against corrupt data is the negative controls. They should 
all report low signal, and this low value should be fairly uniform (i.e. it should not show any 
pronounced spatial pattern, although control probes from different genes may pick up different 
amounts of non-specific signal). The signal from negative controls gives an estimate of the 
background in all signals due to non-specific hybridization and from the substrate. You won’t be 
finding any gene signals reliably at the same levels as the signals from negative controls. You can 
also detect background anomalies using negative controls. 
  
The second line of defence against corrupt data is the set of positive controls. Positive controls give 
some idea of the spatial variation in hybridization. Probes for the same gene should be uniform 
across the chip. The most common spatial patterns are gradients. Often during hybridization a two-
color chip is placed on a surface, which isn’t precisely level. More of the sample is present at one 
end of the chip, or along one side. In hybridization stations one often observes uneven hybridization, 
and high background, around the inlet ports – it seems the turbulent fluid affects the hybridization 
reaction. One should discard signals from the affected regions, and if this uneven pattern extends for 
a long way it’s better to discard the chip. 

 
The final line of defence is the spike-in controls. These give some idea of the accuracy and linearity 



of the measures, in a well-done experiment that shows minimal background or spatial variation. 
Some very careful experimenters add some spike-ins to the sample before labeling, and some 
(previously labeled) after labeling. 
  

Quality Control of Individual Probes 
If the chip passes all the previous tests, the next step is QC for individual spots or probes. Most 
image quantification programs flag spots that fail their internal QC measures; it’s rarely a good idea 
to keep spots that have been flagged. You may want to do further QC of individual spots based on 
several other measures reported by the image processing program (GenePix is especially good in this 
regard). It’s not practical to examine thousands of spots individually. Some simple criteria that may 
be applied to all spots in batch mode use reported measures, for example the area of the spot, 
geometric measures of circularity, and uniformity.  
The theory behind spot QC is to detect printing anomalies, rather than hybridization problems. The 
printer often drops small amounts of probe, elsewhere than intended. This becomes a problem if a 
spatter of probe for a highly expressed gene lands on a probe for a faint gene; then the signal from 
both channels looks more like the bright gene, rather than the gene which is annotated at that 
position. Another type of problem is spot formation – printers aim to deliver fairly round, even sized 
spots. When they fail, printed clones may flow into each other. So in practice it makes trouble to use 
data from extremely small, or extremely large spots, or those that are very irregular. Further 
measures you might use in batch filtering depend on the level of noise in the image, and the 
uniformity of the color ratios.  

 
Figure. Section of cDNA image: some spots run into each other; these spots have excessively large 
areas. 
  
The area criterion is the easiest to apply and understand. Spots whose size is only a few tens of pixels 
are much more likely to be scatterings of bright probe. Spots, which are much bigger than intended, 
are likely to be mingled with their neighbors.  
  

 
Figure. A plot of one quality score as a function of diameter, for a grid where the intended diameter 
is 100 microns, and the inter-spot distance is 200 microns. 
  
There are further criteria. Most programs give both a mean and a median for a spot. If the spot has a 
reasonable distribution of pixels, the mean and median should be similar. We accept spots if the 
mean and median differ by at most 15%: |µ – m*| < 0.15 (µ + m*)/2. If they are quite different, 
something strange is happening, such as a bright droplet. Finally many new chips feature duplicate 
(or more) probes for each gene. The signals from these duplicates should be similar. We use a 15% 
criterion there also: Accept if  | µ1 – µ2| < 0.15(µ1 + µ2)/2. 

  
It is simplest to set up criteria as filters, and to exclude spots that fail any quality criterion at a certain 



threshold. However in practice few spots may pass all criteria, even with reasonable thresholds for 
each. Some groups use a composite score. (Wang et al 2002) construct quality measures q1, q2, q3, 
and q4, based on area, signal-to-noise, background level, and variability; they define a composite 

score q* = (q1q2q3q4)1/4, and reject a spot if the composite q* < 0.8. The threshold of 0.8 is 
somewhat arbitrary, although spots in their arrays with q* ~ 0.5 have twice the random variation of 
those with q* > 0.8. 
In principle, most quality measures are continuous, and while there are obvious outliers, there is no 
clear-cut threshold. A better procedure than filtering would be to down weight probe signals, in 
further analysis, based on quality score. This poses a practical problem for most people, since it is 
difficult to use weight information in packaged software, although it is easy to adapt hand-coded R 
routines to weighted signals 
  
  
  



Normalization of Competitively Hybridized (Two-Color) 
Microarrays 

Normalization by Scaling 
Scaling a chip means multiplying the signals (intensity measures) for all genes by a common scale 
factor. The reason to do this is that the total brightness is significantly different between the from the 
two channels. If the same total weight of RNA is hybridized in both channels, the differences 
between channels must be due to different uptake of label (dye bias) of RNA hybridized. In fact 
microarray technology can only measure relative levels of expression: per mg RNA. For a two-color 
chip, we have two measures for each gene, one from each channel. For each chip we compute scale 
factors Cred and Cgreen , by: 

 
where Gi and Ri are the measured intensities for the i-th array element (for example, the green and 
red intensities in a two-color microarray assay) and N is the total number of elements represented in 
the microarray. To compare ratios both intensities are appropriately scaled, for example: 

 
This is equivalent to subtracting their average from the logarithms of all the expression ratios, which 
results in a mean log2(ratio) equal to zero, or the (geometric) mean ratio is equal to 1. 

  
In order to make individual channels more comparable across chips, the same constant is used for all 
chips. In practice there are often anomalies at the top end, for examples a number of probes are 
saturated. One gets more consistent results by using a robust estimator, such as median or 1/3 – 
trimmed mean: take mean of middle 2/3 of probes, and scale all probes to make those equal. (John 
Quackenbush suggested this originally, but TIGR now uses lowess – see below.) 
  

Two Parameter Normalization Methods 
Whereas normalization adjusts the mean of the log2(ratio) measurements, it is common to find also 
that the variance of the measured log2(ratio) values to differ between arrays. One approach to 
dealing with this problem is to adjust the log2(ratio) measures so that the variance is the same. This 
often works, in reducing variance, but sometimes works too well, in that variance of individual 
measures is actually increased. Probably a partial adjustment is optimal, but it seems unprincipled.  
Another two-parameter approach is a linear regression of one channel on the other. This doesn’t 
seem to do as well. 
  
Intensity Dependent Normalization with Lowess 
With a little experience it becomes clear to a researcher that these approaches do not compensate for 
all the systematic differences between chips that obscure and bias analysis of real biological 
differences. Several statisticians have tried to identify variables, which systematically bias 
expression ratios. For example one commonly observes that the log2(ratio) values have a systematic 
dependence on intensity – most commonly a deviation from zero for low-intensity spots. Under-
expressed genes appear up-regulated in the red channel. Moderately expressed genes appear up-
regulated in the green channel. No known biological process would regulate genes that way – this 
must be an artefact. It appears that the explanation is chemical: dyes don’t fluoresce equally at 



different levels, because of different levels of ‘quenching’ – a phenomenon where dye molecules in 
close proximity, re-absorb light from each other, thus diminishing the signal. Quenching acts at 
different levels for each dye. 

The easiest way to visualize intensity-dependent effects is to plot the measured log2(Ri/Gi) for each 
element on the array as a function of the log2(Ri*Gi) product intensities. This 'R-I' (for ratio-
intensity) plot can reveal intensity-specific artifacts in the log2(ratio) measurements. Note that Terry 
Speed’s group calls these variables ‘M’ and ‘A’, and the plot is an ‘MA plot’. 

 
Figure 1. Ratio-Intensity plot showing characteristic ‘banana’ shape of cDNA ratios; log scale on 
both axes. (courtesy Terry Speed) 

We would like a normalization method that can remove such intensity-dependent effects in the log2
(ratio) values. The functional form of this dependence is unknown, and must depend on many 
variables we don’t measure. An ad-hoc statistical approach widely used in such situations, is to fit 
some smooth curve through the points. One example of such a smooth curve is a locally weighted 
linear regression (lowess) curve. Terry Speed’s group at Berkeley used this approach.  

To calculate a lowess curve fit to a group of points (x1,y1),…(xN,yN), we calculate at each point xi, 
the locally weighted regression of y on x, using a weight function that down-weights data points that 
are more than 30% of the range away from xi. We can think of the calculated value as a kind of local 
mean. For each observation i on a two-color chip, set xi = log2(Ri*Gi) and yi = log2(Ri/Gi). The 
lowess approach first estimates y(xk), the mean value of the log2(ratio) as a function of the log2
(intensity). Lowess normalization corrects systematic deviations in the R-I plot by carrying out a 
local weighted linear regression as a function of the log2(intensity) and subtracting the calculated 
best-fit average log2(ratio) from the experimentally observed ratio for each data point.  

The normalized ratios r* are given by 

.  

The result is that ratios at all intensities have a mean of 0, as seen below. 

 
Figure 2. As in Figure 1, but corrected by lowess normalization. 

  



Global versus local normalization.  

Most normalization algorithms, including lowess, can be applied either globally (to the entire data 
set) or locally (to some physical subset of the data). For spotted arrays, local normalization is often 
applied to each group of array elements deposited by a single spotting pen (sometimes referred to as 
a 'pen group' or 'subgrid'). Local normalization has the advantage that it can help correct for 
systematic spatial variation in the array, including inconsistencies among the spotting pens used to 
make the array, variability in the slide surface, and slight local differences in hybridisation 
conditions across the array. There is some controversy among biotechnologists about how likely it is 
that a single print tip will cause a systematic variation. 

Another approach is to look for a smooth correction to uneven hybridisation. The thinking behind 
this approach is that most spatial variation is caused by uneven fluid flow. Flow is continuous, and 
hence the correction should be continuous as well. 

When a particular normalization algorithm is applied locally, all the conditions and assumptions that 
underlie the validity of the approach must be satisfied. For example, the elements in any pen group 
should not be preferentially selected to represent differentially expressed genes, and a sufficiently 
large number of elements should be included in each pen group or spatial area for the approach to be 
valid. 

Quantile Normalization 
A good design will place all contrasts of interest directly on chips, but sometimes that is impossible, 
or just not done. In that case we may want to compare parallel measures: , ie. measures that are not 
directly contrasted on an array. We observe that variance is very high between parallel measures. We 
need a kind of normalisation that works across arrays as well as within arrays. It turns out that 
quantile normalization works quite well at reducing variance between arrays, while not losing any of 
the properties of lowess normalization. 
  



Quality Control of Affymetrix Chips 
  
One of the particular values of a multi-probe system is that all probes effectively act like positive 
controls. Since the Affymetrix probes have such different response characteristics, you don’t want to 
reject large or small probes, but with a good multi-chip model, the hybridization problems show up 
as outliers from fitted multi-probe model.  
  
  
  



Normalization of Affymetrix Chips 

Normalization by Scaling and its Limitations 
The simplest approach to normalizing Affymetrix data is to re-scale each chip in an experiment by 
its total intensity, as described in the Normalization Introduction. Variants of this approach, scaling 
by trimmed mean intensity, or by median intensity, are widely available in commercial software.  
Affymetrix introduced a new approach for their 133 series chips, using a set of 100 'housekeeping 
genes': the chips are re-scaled so the average values of these housekeeping genes are equal across all 
chips. The author believes these approaches are adequate for about 80% of chips in practice. 
To do better, we examine in detail the relationships among replicate chips (chips hybridized to the 
same sample). Figure 1 shows a scatter plots of probes from one pair of chips; there is clearly a non-
linear relation among probes. Figure 2 shows plots of probe distributions from a number of replicate 
chips; these distributions have very different shapes; any scaling transform applied on a log scale, 
will shift the distribution curve to the right or left, but not change its shape. Finally figure 5 shows R-
I plots of pairs of Affymetrix replicate chips; a scaling transform will shift the R-I plots up or down, 
without changing their configuration. For perhaps 80% of chips, (perhaps 65% of pairs), the 
relationship is close enough to linear that a scaling transform will get results to within 20% of the 
best possible. The relationships among different chips are quite non-linear in perhaps 20% of cases. 
We want to correct that to get the best possible accuracy. 

 
Figure 1. Plot of probe signals from two Affymetrix chips hybridized with identical mRNA samples. 
The black straight line represents equality, while the blue curve is a spline fit through the scatter plot. 
  

 
Figure 2. Density of PM probe signals on 23 different chips from GeneLogic spike-in experiment 
(Courtesy of Terry Speed) 

Two-Parameter Methods 
Two-parameter methods can do better, at the expense of greater complexity. MAS5 introduced a 
reference (baseline) chip method using linear regression. The procedure is to construct a plot of each 

 



chip's probes against the corresponding probes on the baseline chip; eliminate the highest 1% of 
probes (and for symmetry the lowest 1%). Fit a regression line to the middle 98% of probes.  
Another two-parameter approach is to both re-scale and shift the origin, in order fit both the mean 
and the standard deviation of the probe distribution to the common mean and standard deviation of 
all data. This seems to do somewhat better than regression, in reducing noise (variation among 
replicate measures on the same sample), at the cost of (sometimes) introducing a few negative 
values. 

Invariant Set Normalization 
Li and Wong introduced a method, where a large number of genes are selected ad-hoc as references, 
rather than using a standard set of 'housekeeping genes'. Their method assumes that there is a subset 
of unchanged genes, between any two samples. Their method selects a subset of genes g1, …, gM, 
whose probes: p1, …, pK, (K ~ 10000), occur in the same rank order on each chip such that p1 < p2 < 
…< pK in both chips (an invariant set); then fits a non-parametric curve (running median) through 

the points { (p1
(1), p1

(2)), …, (pK
(1), pK

(2)) }. Ideally one would like a common invariant set of 
reference genes across all chips, but in practice, only a very few probes are in common rank order, or 
even close to that, across all chips. 

Quantile Normalization  
Terry Speed’s group introduced a non-parametric procedure normalizing to a synthetic chip. Their 
method assumes that the distribution of gene abundances is nearly the same in all samples. For 
convenience they take the pooled distribution of probes on all chips. Then to normalize each chip 
they compute for each value, the quantile of that value in the distribution of probe intensities; they 
then transform the original value to that quantile’s value on the reference chip. In a formula, the 
transform is 
x  = F (F (x)), 

where F1 is the distribution function of the actual chip, and F2 is the distribution function of the 
reference chip. 

norm 2
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1



 
Figure 3. Schematic representation of quantile normalization: the value x, which is the α-th quantile 
on the chip, is mapped to the value y, which is the α quantile of the reference distribution. 
In practice this transform is non-linear, but not usually too different from straight. See Figure 4. In 
practice this removes most of the apparent bias from the R-I plot. See figure 5. It also reduces 
variance among replicates, much more than normalization by scaling. 

 
Figure 4. Some typical transforms by quantile normalization. Many are nearly linear, but some are 
quite non-linear. 

 
Figure A. Ratio Intensity Plot of all probes for four pairs of chips from GeneLogic spike-in 
experiment 



 
 Figure B. As in A, after normalization by matching quantiles. Both figures courtesy of Terry Speed 
Local Regression  
We construct a synthetic reference chip by averaging the values of each probe across all chips. 
  

Critical Assessment 
Ideally we would like a method that is based on some understanding of the hybridization process, 
and uses simple statistical procedures, to bring all chips to a common reference. Scaling is simple, 
but seems to be inaccurate. Methods based on multiple house-keeping genes, such as the MAS 
method for the 133 chip, and the Li and Wong  method, appear promising, however they would work 
better if the reference set of genes were similar across all chips. These methods use a single chip 
reference, so peculiarities in that chip are forced onto all the others. Quantile normalization uses a 
single standard for all chips, however it assumes that no serious change in distribution occurs. This 
appears to be a rather strong assumption about gene distributions; however, in practice genes move 
up and down roughly equally; it would need several hundred genes to be changed greatly and in one 
direction, to drive quantile normalization in error by more than 20%. This may well be true in studies 
of senescence, or interference with basal transcriptional apparatus, or selective comparisons of 
RNA's attached to ribosomes, and perhaps in extremely malignant tumors.  
  



Low-Level Analysis of Affymetrix Chips 
  

Description of Affymetrix Probes 
  
The strength of the Affymetrix system is that multiple distinct oligonucleotide probes on each chip 
represent every gene. However the signals from the different probes for the same gene aren’t the 
same; signals from individual probes for the same gene may differ, on the same chip, by as much as 
two orders of magnitude (a factor of 100). See Figures 1 and 2. The sequences are different, and the 
probes have different hybridization constants for their target: the most important factor in signal 
intensity is C:G content. How do we combine signals from the many probes for a gene, into a single 
estimate of the abundance of that gene?  

 
Figure 1. Images of probes from human GAPDH probe set extracted from an Affymetrix U95A chip 
image. PM probes in top row; corresponding MM probes on bottom. Two probes are bright, three 
others are moderately bright, the rest are dim. 
  

 
Figure 2. Line representation of intensities from a typical probe set in the mouse chip. PM values 
appear in blue; MM in green. Vertical axis height represents 30,000. Pale blue lines represent 
standard deviations of probes across chips. Image from dChip. 
  

Estimates from Probe-Level Signals 
There has been considerable discussion over the appropriate algorithm for constructing single 
expression estimates based on multiple-probe hybridization data. To date, over a dozen different 
methods have been published, which aim to synthesize the different readings from the various probes 
for a gene, into a single estimate of transcript abundance. Affymetrix recently sponsored a 
conference on the topic. 
  

Affymetrix MicroArray Suite 
Affymetrix has upgraded their MicroArray Suite (MAS) software several times over the short history 
of their product. MAS 4 was the standard until January 2002 and is still the most commonly cited 
measure in published papers. The simplest way to get one number from several numbers is to take an 
average. MAS 4 calculates a robust average of the probe-pair differences (PM – MM) for each probe 
pair representing a gene. The more recent MAS 5 improves in three ways: first the difference is 



taken between PM and an estimate of background based on MM (rather than MM itself); secondly 
the intensities are transformed to a logarithmic scale before the average is taken; third the average is 
a more sophisticated robust mean (Tukey biweight). 

Principles of MAS5  
MAS 5.0 computes local background in each of 16 squares, and then subtracts a weighted 
combination of these background estimates at each probe. For each probe set, compute a robust 
average of log probe pair differences: log(PMj/MMj). Call this SB. Then adjust each PM probe as 
follows: if MMj < PMj, then log2(PMj/MMj) is used; if MMj>PMj, then log(PMj) – SB is used, 
unless SB is too small. See the “Statistical Algorithm Description Document” from Affymetrix, for 
more details. 

Critique 
The idea of averaging different probe intensities for the same gene is seems quite wrong. It is like 
averaging the angular height of a building seen from different vantage points; or measuring a 
person’s height in inches, feet, cm, ells, furlongs, and meters, and taking the average; or averaging 
the readings from scans taken at very different settings. A second failing is that there is no 'learning' 
about probe characteristics, based on the performance of each probe across chips. 
  

Multi-Chip (Linear) Models 
A chemical motivation for multi-chip models comes from reasoning that the amount of signal from 
one probe in a gene’s probe set, should depend both on the amount of that gene in the sample, and on 
the specific affinity of the probe for that gene’s mRNA. The statistical motivation for multi-chip 
models is observing that the signals from individual probes move in parallel across a set of chips 
(this is clearer with the better normalizations). See Figure 3. Another way to see this is to watch the 
animations of probe sets in dChip.  

 
Figure 3. Probe signals from a spike-in experiment. The concentrations are plotted along the 
horizontal axis (log scale), and the probe signals are plotted on the vertical axis (log scale). Each 
probe is represented by one color. The different probe signals change in parallel. Image courtesy of 
Terry Speed 
  
We want a statistical model that estimates both the factors probe affinity, and gene abundance. 
Statisticians like linear two-factor models: that means, the errors in each data point have similar 
variances, and the two factors combine in a simple way. If the signal from each probe is proportional 



to both probe affinity, and gene abundance, then it must depend on the multiplicative product. 
Suppose for one target gene, the chip has a set of probes p1,...,pk; each probe pj binds to the target 
with affinity fk. Suppose in each sample i an the gene occurs in amount ag. Then the intensity of 
probe j on chip i should be proportional to fk ai. See figure 4. 

 
Figure 4. Ideal linear model relationship among intensity (height of green bars), abundance of 
transcript (ai), and probe affinity (fj). 
  
In practice, the discrepancies between data and ideal model, include frequent outliers, besides the 
usual random fluctuations in signal intensities. Outliers are measures that lie far beyond the typical 
range of 'noise' (random variation). These may be due to scratches, or uneven heating, or other 
artefacts. See Figure 1 in Quality Control. Typically 10-15% of probes in an Affymetrix chip are 
outliers. Most methods to fit data flounder badly on data with this many outliers. One approach is to 
try to identify the outliers, and exclude them; this is the Li & Wong approach. Their method 
proceeds in this cycle: fit, identify outliers, throw out outliers, and fit again. Another approach is to 
use a robust fitting method. Robust methods try to fit the majority of data points quite well, but 
willing to fit a small fraction quite badly. Some such methods are median polish, or IRWLS 
(iteratively re-weighted least-squares), which are implemented in RMA. Another approach is least 
median squares, which is not implemented. 
  

Constant Variance – the Li and Wong Model and Critique 

Li and Wong originally suggested the model PMij - MMij = fk ai + εij, following on from MAS4. 

Since then they have found better fits with the model PMij  = fk ai + εij,  (PM-only). Li-Wong 
assumes that the noise in all the probe measures is roughly same size. In practice all biological 
measures exhibit intensity-dependent noise. (see Figure 4 in Distributions). The effect of their 
assumption is that probes with smaller variation are ignored, even though this variation may be 
measuring real differences. Fortunately the bright probes are often the most specific, and it does little 
harm to ignore the majority of probes, if the bright probes are good. They have tuned their fitting 
procedure to try to reduce the emphasis on the very bright probes, but this has resulted in often 
throwing out a good bright probe probe as an outlier. 
  

 
Figure 5. A probe set with values (represented by red lines) fitted to actual PM-MM values (in blue). 
  



Proportional Variance – RMA 
This is largely the work of Terry Speed's group at Berkeley, especially Ben Bolstad, and Rafael 
Irizarry. They work only with PM values, and ignore MM entirely. They take a log transform of 
equation () and find  

 
With errors proportional to intensity in the original scale, the errors on the log scale have constant 
variance. After background subtraction and normalization they fit:  

 
where nlog is their terminology for ‘normalize and then take logarithm’. They fit this model by 
iteratively re-weighted least squares, or by median polish. Code is available in the affy package on 
BioConductor, together with quantile normalization.  
  

Critical Assessment 
This appears to be the best overall method available. See figure 6. Comparing the performance on 
replicate arrays – so criterion is noise should be small. four strata of genes – lowest to highest 
expression. Measures were computed for each and standard deviation. MAS5 apparently does a 
decent job on high abundance genes, but the multi-chip models do better on low-abundance genes, 
such as transcription factors, and signalling proteins. Affymetrix has seen the evidence, and they are 
planning their own multi-chip model. However details are not being revealed. Furthermore the 
marketing people at the company want to remove information from the public domain. This will 
hinder further improvements to the model, and prevent people from using the best analytic tools for 
their data. 

 
Figure 6. Comparison of MAS5 (green), dChip (black), RMA (blue), RMA (red): The genes have 
been divided into quarters based on average expression. Each boxplot represents the standard 
deviation of genes in one fraction. Note that the multi-chip models do almost ten times better than 
MAS5 on the low-abundance genes; this category includes most transcription factors and signalling 
proteins. 
  

Software Available 
Li and Wong’s method is available through their program dChip, at www.dchip.org. Academic 
licenses are free. 
The RMA method is available as part of the affy package in the Bioconductor tools suite: see 
www.bioconductor.org. There is also a windows standalone from Ben Bolstad’s web site. A 
commercial software vendor, Iobion, has incorporated RMA into their GeneTrafic product.  
  

http://www.bioconductor.org


Exploratory Methods 
  

Exploratory Graphics 
The goal of exploratory graphics is to easy identify genes and groups. Several types of display make 
it easier to select differentially expressed genes (those whose expression levels change significantly 
with the experimental treatment or clinical condition). Some displays showing groups appear in 
Clustering. 
  
Volcano Plot 
The 'volcano' plot is a heuristic device that arranges genes along dimensions of biological and 
statistical significance. The first (horizontal) dimension is the best p-value for a t-test of differences 
between samples (most conveniently on a negative log scale – so smaller p-values appear higher up); 
this indicates the statistical evidence for change. The researcher can then make judgements about the 
most promising candidates for follow-up studies, by trading off both these criteria by eye. With a 
good interactive program <link>, it is possible to attach names to genes that appear promising. 

 
Quantile Plot 
A major issue in microarray studies is separating out false positives from true positives. See 
Statistical Significance for a detailed treatment. A convenient way of assessing the most likely true 
positives is to plot the t-scores obtained by the test against the t-distribution. If the test scores follow 
the t-distribution this plot will be a straight line. The really significant genes stand out from the 
straight line.  
  



 



Clustering 

Pattern-Finding and Clustering 

The goals are to identify groups of genes, and to find relations among samples, and to identify 
outliers among samples. The first widely publicized studies using microarrays aimed to find 
uncharacterized genes which act at specific patterns during the cell cycle; clustering is a natural way 
to select with similar expression profiles. Clustering is the natural first step in doing this. 
Unfortunately many people got the impression that clustering is the 'right' thing to do with 
microarray data, and many software packages have catered to this impression. The proper way to 
analyze data is the way that addresse the goal at which the study was aimed. If you have limited 
ideas about what groups you will find, clustering remains a valuable exploratory technique for 
suggesting resemblances among groups of genes. It’s not a way of finding up- and down-regulated 
genes in an experimental study.  
  
As with any exploratory technique, one should look to see what may underlie the groups, before 
going to the lab. In practice the author finds that clustering most often identifies systematic 
differences in collection procedures or experimental protocol. These are useful but not biologically 
significant. Most breast cancer profiles segregate into ER+ and ER-, which is re-assuring but hardly 
news 

How to Do Clustering 

After that disclaimer, suppose that we want to find groups of similar genes, how do we go about it? 
Almost all exploratory microarray methods use the idea that differences between gene expression 
profiles are like distances. How to get from many differences to a single measure of distance is 
somewhat arbitrary. Different methods give different results. Nevertheless it's useful to think about 
what similarities will be amplified by the data scale you use, and what assumptions are made by the 
assembly method you choose. Four choices you have are: 
i) what scale, 
ii) what selection of genes, 
iii) what metric (distance measure), and 
iv) what clustering assembly algorithm. 

Scale and Selection 

Differences measured on the linear scale will be strongly influenced by highly expressed genes. The 
log scale will amplify the noise among genes which have low expression levels. In the author's 
opinion, a variance stabilizing transformation (such as Durbin and Huber’s) is a more appropriate 
scale for multivariate exploratory techniques, such as clustering and PCA (see below). Genes whose 
signal falls within the background noise range are probably contributing just noise to your clustering 
(and any other global procedure). It's probably wise to discard them. 
Most cluster programs give you a menu of distance measures: Euclidean, Manhattan distances, and 
some relational measures: correlation, relative, and mutual information. The distance measures refer 
to how differences are combined: Euclidean is straight-line distance: (root of sum of squares), 
Manhattan is sum of linear distances. The correlation distance measure is actually 1-r, where r is the 
correlation coefficient. The mutual information (MI) is defined in terms of entropy: H = Σp(x)log2(p
(x)) for a discrete distribution {p}. Then MI(g1,g2) = H(g1) + H(g2) – H(g1,g2) for genes g. This 
measure is robust – not affected by outliers. However it is tedious to program, because it requires 
adaptive binning to construct a meaningful discrete distribution. 
By and large there are no theoretical reasons to pick one over the other, since we don’t really know 
what we mean by ‘distance’ between expression profiles. Most of these measures are fairly sensitive 
to outliers, except mutual information. Robust versions of these measures can easily be constructed 



by a competent statistician, but are not available in most software packages. However we do get 
different results depending on the algorithm we use, as shown below for a study with 10 samples: 
two normal samples and two groups of tumor samples. 

 
Clustering of the same data set using four different distance measures. All genes were on a 
logarithmic scale, and only genes with an MAS 5 ‘Present’ call in 8 out of 10 samples were used 
(Affymetrix data). The four measures are listed in the titles; ‘relative’ is |x-y|/|x+y|. 

Algorithms for assembling clusters          

Most biologists find hierarchical clustering more familiar, and other algorithms somewhat magical. 
Statisticians object to hierarchical clustering because it seems (falsely) to imply descent; however 
this is a quibble: all of the common clustering methods are based on models which don’t really apply 
to microarray data. Broadly speaking, the differences between clustering methods show up in how 
ambiguous cases are assigned; if you have very many ambiguous cases you’ll see great differences; 
however if so, then maybe clustering isn’t appropriate anyway, because the data don’t separate into 
groups naturally. The k-means and SOM methods require you to pick a number of clusters to target, 
but you don’t know ahead of time, you’ll be trying out lots of values. A criterion that some people 
use to assess how many clusters to use is to look at how much the intra-group variance drops at each 
stage.  
 Statistical significance of clusters by bootstrapping 
An important but rarely asked question, is how reliable are the clusters you obtain. Another approach 
is to use Bootstrap or Jack-knife analysis, where you re-cluster many times, each time re-sampling 
conditions or genes from your original data, and then derive new clusters of genes or conditions. 
Branches in a hierarchical cluster that are supported by a large fraction of the re-sampled data sets 
are considered moderately reliable. A common figure is 70%, but this is arbitrary, like the often-
quoted 5% level of significance. 
  

Principal Components and Multi-dimensional scaling 

Several other good multivariate techniques can help with exploratory analysis. Many authors suggest 
principal components analysis (PCA). IMHO this is not very often useful, since the first PC will be 



largely concerned with unresolved systematic error in your data. In fact some people have suggested 
seriously normalizing by removing the first PC. PCA is also not terribly robust to outliers, and is 
sensitive to the scale that is used. 
A similar technique that I like for graphical display is multi-dimensional scaling. The classical form 
of MDS is identical to PCA for most data sets. However if you fix a dimension, a modern iterative 
algorithm can place the points in a fairly representative arrangement that is more representative of 
true distances, than the PCA for that number of dimensions. 

 
A study comparing treated and control: two batches of 3 treatment (T) and 3 controls (C), done on 
two different dates: 1T3 represents 3rd treated sample on day one. Both represent genes on log scale. 
We can see that the day 1 chips cluster together, and are displayed together by MDS. However the 
day 2 genes seem to fall into two distinct clusters, which don’t divide neatly along T and C. Should 
this experiment be abandoned? The MDS plot shows that the C samples on day 2 are in fact quite 
close, where as the 3 T’s are more disparate but all quite different from the C’s. We can work with 
the day 2 data quite confidently, and separately from day 1. Data courtesy of Hui Gao. 
  
  
  
  



Statistical Tests 

The Purpose of Formal Statistical Tests 
Microarray data is used both as a guide to further, more precise studies of gene expression, and 
sometimes the microarray data itself is presented as evidence for changes in gene abundance. If the 
expression data is used as evidence, then the experimenter must present the degree of evidence – ie. 
the correct ‘p-value’ – for each gene selected out of the thousands in the array. Most microarray 
papers present p-values for individual genes more significant than they should be, for the reason that 
many genes are tested in parallel; the p-value means something different in the multiple-testing 
context. 
  
The normal follow-on to a microarray study is to estimate abundance of single genes by qt-PCR or 
other methods. We may want simply to rank the genes in order of likely difference, for future qt-
PCR studies.  Then the goal of the analysis is to provide the experimenter with a list of good 
candidate genes to follow up, where a majority (say more than half), are really different (true 
positives). Another way to say this is that the expected number of false positives is some manageable 
fraction (say less than .5) of the genes selected.  Here statistical significance is a guide to better 
screening. This question leads us to specify the false discovery rate (FDR), rather than significance 
level (p-value). 
  
What Tests are Appropriate to Microarray Data? 
Outliers and systematic biases are common in expression data. Many kinds of statistical tests work 
well with normally distributed data, and but give falsely extreme p-values when the distribution of 
values itself has frequent extreme values. The p-values from a t-test are within 5% most of the time 
under a skewed distribution, but give erroneously small or large p-values when there are more than 
10% 2-fold outliers, which is not unusual with microarray data. Also errors in microarray data are 
correlated; very few statistical tests give accurate results in this case. What kinds of tests are reliable 
under these circumstances?  
One approach is to use non-parametric tests throughout. Non-parametric tests deliver conservative p-
values for all kinds of distributions, and their p-values are generally insensitive to outliers. However 
they are less likely to pick up regulated genes, than parametric tests; furthermore even non-
parametric tests will give inaccurate p-values in the presence of correlated errors. If there is a single 
approach that is widely applicable and copes with all these problems it is permutation tests, which 
are simple and easy to program. 
To do a permutation test, you  

i)                    choose a test statistic  
ii)                   compute the test statistic for the groups  
iii)                 permute the labels on samples at random, and recomputed the test statistic for the 

rearranged labels. Repeat for at least 1,000 permutations 
iv)                 compare the true test statistic to this distribution. 

A common test statistic for comparing treatment vs. control is the t-statistic. 

, 
where SD is the standard deviation for gene i. 
Some authors use the following test statistic s rather than the usual t statistic, in order to reduce the 
number of statistically significant genes, which change only a little. 

, 
where qα is the a-th quantile of standard deviations. 
  



What is a P-Value? 
Most tests give p-values, however their meaning is not often discussed. A p-value refers to 
something in a possible world. The usual (single test) p-value is the probability of the observed test 
statistics, if there is no real difference in any gene among groups (this assumption is called the null 
(as in default) hypothesis). If one decides that a difference occurs, whenever a test statistic passes a 
certain threshold, then the p-value is the answer to the question: how often would the numbers 
deceive us? How often would random sampling from the null distribution give test statistics as 
extreme as observed? When you decide an effect is significant at 5%, you say you are willing to be 
wrong once in twenty decisions that there is a difference. (We don’t often cross the street on a 95% 
confidence that there is a break in traffic.) 
  
Multiple Testing Corrections and False Positives 
Suppose you compare two groups of samples with no real differences, using a chip with 10,000 
genes on it. For some genes, the variation between samples will be large relative to the variation 
within groups due to random, but uneven distribution of the genes; ie. 500 will appear ‘significantly 
different’ at a 5% threshold. Therefore the p-value appropriate to a single test situation is 
inappropriate to presenting evidence for a set of changed genes. 
  
Statisticians have devised several procedures for adjusting p-values to correct for the multiple 
comparisons problem. The oldest is the Bonferroni correction; this is available as an option in many 
microarray software packages. The corrected p-value, pi* for gene i is set to: 
pi* = Npi, if Npi < 1,  

1, if Npi > 1. 
This is correct, but too conservative. In practice, few genes meet this strict criterion, including many 
known to be differentially expressed from other work. 
Another procedure is the Sidak correction:  
pi* = 1 – (1 – pi)

N.  

The Bonferroni correction is a conservative approximation to the Sidak: expanding 1 – (1 – pi)
N = 1 

– (1 – Npi + …) gives Bonferroni. 
This is exactly correct if all genes are independent, however it is still too conservative if test statistics 
are correlated (ie. genes are co-regulated). 
To give some idea of how to approach the problem in the realistic case when genes are correlated, 
imagine an extreme case: if all genes were perfectly correlated. In that case all tests are identical, and 
p-values for one are p-values for all; the multiple-comparisons correction changes nothing. In reality 
typical gene data is highly correlated: one factor may account for as much as half the variance. The 
multiple corrections correction for correlated data should be weaker than for independent data, while 
stronger than that for identical data. The number of extreme test statistics will be more variable than 
with independent data, although it will have the same long-run average. More sensitive tests are 
possible if we can generate an accurate joint null distribution of p-values.  
This is illustrated below 
  



 
Figure. P-values from genes under null hypothesis, under various degrees of correlation 
  
The average number of genes exceeding the .05 threshold in the long run is always 5%. If genes are 
independent, then (roughly) 5% of genes exceed the .05 threshold, 100% of the time. If genes are 
perfectly correlated, then 0% of genes exceed the .05 threshold, 95% of the time, and 100% of genes 
exceed the .05 threshold 5% of the time. In a realistically correlated situation, for example, 2% of 
genes exceed the .05 threshold, 90% of the time, and 40% of the genes exceed the .05 threshold, 
10% of the time. In that case the corrected p-value when 2% of the genes exceed the .05 threshold 
should be 10%.  
This gives us an approach to correcting for multiple testing: for a group of potentially significant 
genes, we ask how often would a group this size appear significant? To be exact: for a specific 
number k and a threshold α, how likely is it that at least k single test p-values will fall under the 
threshold for significance level α?  

Calculating Permutation-Based P-values 
To calculate corrected p-values, first calculate single-step p-values for all genes: p1, …, pN. Then 
pick a set of m genes, which appear interesting to you; order the smallest m p-values: p(1), …, p(m), 
from least to greatest. Now permute the labels at random relative to the samples and compute the test 
statistic between (randomized) groups. For each k < m keep track of how often you get k p-values 
less than p(k). After all permutations, for each value of k compute the fraction of permutations with k 
p-values less than p(k). This is the corrected p-value. This procedure is more powerful than the other 
corrections, in that it gives a bigger list of significant genes at any specified risk of false positives. It 
is implemented in the Bioconductor package multtest. See Ge, et al, Test, 2003 
  

http://www.bioconductor.org/

