An overview of the computational analysis of biological sequences

> Prof. S Subbiah Department of Applied Physics Stanford University & Bioinformatics Centre National University of Singapore

Topics to be covered Basis for sequence alignment (1 hr of lectures) Evolutionary Structural Pairwise sequence alignment (2 hrs of lectures) Why ? How ? Example Multiple sequence alignment (2 hrs of lectures) Why ? How ? Example

Evolutionary basis of alignment

- Enable the researcher to determine if two sequences display sufficient similarity to justify the inference of homology.
- Similarity is an observable quantity that may be expressed as say %identity or some other measure.
- Homology is a conclusion drawn from this data that the two genes share a common evolutionary history.

- Genes are either homologous or not homologous.
- There are no degrees of homology as are there in similarity.
- While it is presumed that the homologous sequences have diverged from a common ancestral sequence through iterative molecular changes we do not actually know what the ancestral sequence was.

Structural basis for alignment

- It is well-known that when two protein sequences have more than 20-30% identical residues aligned the corresponding 3-D structures are almost always structurally very similar.
- Overall folds are identical & structures differ in detail.
- Form often follows function. So sequence similarity by way of structural similarity implies similar function.
- So the sequence alignment is often an approximate predictor of the underlying 3-D structural alignment.

Pairwise sequence alignment

Why ?How ?Example

How ?

Other methods

 Align 	(Dayhoff, early 80's)
Gap	(GCG package)
 Smith-Waterman 	(Smith, Waterman)
 Bestfit 	(GCG Package)
FASTA	(Pearson, Lipman)
BLAST	(Altschul, Lipman)
HMM methods	(Haussler, Eddy)
Etc.	

The case of human eye lens protein and E.coli metabolic enzyme

Human-ZCr	MATGQKLMRAVRVFEFGGPEVLKLRSDIAVPIPKDHQVLIKVHACGVNPVETYIRSGT
Ecoli-QOR	MATRIEFHKHGGPEVLQA-VEFTPADPAENEIQVENKAIGINFIDTYIRSGL
	****** *
Human-ZCr	RKPLLPYTPGSDVAGVIEAVGDNASAFKKGDRVFTSSTISGGYAEYALAADHTVYKLP
Ecoli-QOR	-PPSLPSGLGTEAAGIVSKVGSGVKHIKAGDRVVYAQSALGAYSSVHNIIADKAAILP * ** * * ** ** ** ** ** **** * **
Human-ZCr	LDFKQGAAIGIPYFTAYRALIHSACVKAGESVLVHGASGGVGLAACQIARAYGLKILG
Ecoli-QOR	ISFEQAAASFLKGLTVYYLLRKTYEIKPDEQFLFHAAAGGVGLIACQWAKALGAKLIG'
Human-2Cr	GTEEGQKIVLQNGAHEVFNHREVNYIDKIKKYVGEKGIDIIIEMLANVNLSKDLSLLS
Ecoli-QOR	GTAQKAQSALKAGAWQVINYREEDLVERLKEITGGKKVRVVYDSVGRDTWERSLDCLQ ** * ** ** ** ** ** * * *
Human-ZCr	GRVIVVG-SRGTIEINPRDTMAKESSIIGVTLFSSTKEEFQQYAAALQAGMEIG
Ecoli-QOR	GLMVSFGNSSGAVTGVNLGILNQKGSLYVTRPSLQGYITTREELTEASNELFSLIASG * * * * *
Human-ZCr	KPVIGSQYPLEKVAEAHENIIHGSGATGKMILLL
Ecoli-QOR	KVDVAEQQKYPLKDAQRAHE-ILESRATQGSSLLIP
	* . * *** *** * .*.

Example - Cautionary tale of Function Inference

- Appear to share a high degree of similarity.
- Should have similar biological function.
- Hypothetical statement.
- Crystalline: lens matrix of vertebrate eye.
 E.coli metabolic enzyme quinone oxido reductase
- Function has changed during the course of evolution.
- BE CAREFUL !!

Why?

Basis for other analyses:

- All the ones previously discussed for pairwise but with more subtle information.
- Creation of sequence profiles for searching (PROSITE, PRINTS, PFAM, BLOCKS)
- Deduction of sequence motifs.
- Useful for analysing protein family relationships.
- A convenient backdrop for annotation summarising information results of various sequence analysis.

n	
Pro	ogressive alignment approach – e.g. IULLA (Subbiah, 1984
	Create a tree by comparing the most similar sequences step by step.
-	The two most similar sequences are aligned and then the next two sequences are aligned that are most similar.
1	Re-adjust the gaps so that the alignment is maximum and the gaps are least.
A	Heuristic approach, in theory not always optimal. dd new sequences to an existing
AI 1	
1.	One new sequence
2.	A set of new sequences, added one at a time
Us	se sequence weights to ensure that new sequence is

How?

Other methods

- Feng & Doolittle
- Clustal
- ClustalW
- PileUp
- SAGA, Genetic Algorithms
- Etc.

Why?

• Is there any protein sequence that is similar to mine?

- Is this gene known in any other species ?
- Has someone already identified this sequence ?
- Can we guess function before tedious experimentation ?

How?

Progressive alignment approach – e.g. TULLA (Subbiah, 1984)

- Assume n = 3 sequences to be aligned -a, b & c.
- Align all pairs of sequences -(a,b), (b,c) & (a,c) by pairwise NW and pick the best aligned/most related pair, say (a,b).
- Note, the (a,b) alignment may have gaps/insertions in a relative to b. At all subsequent steps we keep this (a,b) alignment internally "locked" – no further gaps/insertions introduced in a relative to b.
- Now align this best locked pair (*a*,*b*) against the next sequence *c* and obtain a 3-way alignment, *G*. Note that gaps are introduced either in sequence *c* or to both sequences *a* & *b* simultaneously.
- When n > 3, repeat as necessary using increasingly larger locket-sets.
- Heuristic method, no guarantee of mathematical optmimum.
- G is not equal to T, but often good enough approximation.

How?

Other methods

- BLASTFASTAPSI-BLASTPHI BLAST
- Etc.

Example – Finding related proteins in databases				
Example I maning related proteins in databases				
The case of major outer membrane protein from Chlamydia				
gi 129145[sp]P06780[OM1C_CHLTR_MAJOR OUTER MEMBRANE PROTEIN gi [79376[pir]]S11007 major outer membrane protein - Chlamyd gi [9957722]gb]AAG09446.1] (AF202456) major outer membrane p gi [3135641]gb]AAG09446.1] (AF063202) major outer membrane p gi [129156[sp]P23114[OM1N_CHLTR_MAJOR OUTER MEMBRANE PROTEIN gi [3135645]gb]AAC31445.1] (AF063204) major outer membrane p gi [129152[sp]P13467]OM1H_CHLTR_MAJOR OUTER MEMBRANE PROTEIN gi [129152[sp]P13467]OM1H_CHLTR_MAJOR OUTER MEMBRANE PROTEIN gi [11561802[gb]AAC31441.1] (AF063203) major outer membrane p gi [11561802[gb]AAC31444.2] (AF063203] major outer membrane gi [11561802[gb]AAC31444.2] (AF063203) major outer membrane gi [11561799]gb]AAC31442.2] (AF063203) major outer membrane gi [12913] sp]P23732[OM1A_CHLTR_MAJOR OUTER MEMBRANE PROTEIN gi [3795451gb]AAC64561.1] (AF06856] major outer membrane p gi [179374[pir][S11006] major outer membrane protein - Chlamyd gi [144539]gb]AAC3145.1] (J03813) major outer membrane prot gi [12642493]gb]AAK23145.1] (AF265239] outer membrane protein gi [12642493]gb]AAK23145.1] (AF265239] outer membrane protein	$\begin{array}{cccc} 737 & 0.0 \\ 730 & 0.0 \\ 711 & 0.0 \\ 709 & 0.0 \\ 705 & 0.0 \\ 705 & 0.0 \\ 701 & 0.0 \\ 700 & 0.0 \\ 692 & 0.0 \\ 692 & 0.0 \\ 691 & 0.0 \\ 691 & 0.0 \\ 690 & 0.0 \\ 690 & 0.0 \\ 691 & 0.$			

