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Lecture 20: Cell- and Tissue-based biosensors

Last time: detection methods
Surface plasmon resonance biosensors

Today: cell- and tissue-based sensors
Primary transducers and biosensor design with living cells
microphysiometer

Reading: J.J. Pancrazio et al., ‘Development and application of cell-based biosensors,” Ann.
Biomed. Eng. 27, 697-711 (1999)

Cell-based biosensors'®

General concepts

=  Why cell-based biosensors?
o Known ultrasensitivity of cells:
= Olfactory neurons respond to single odorant molecules
= Retinal neurons triggered by single photons
= T cells triggered by single antigenic peptides7

Calcium signalling

o

B PE snapshot
¥Potential for single- E f
molecule sensitivity g,

1 5 0 5 10 15 20
MHG: Time relative to Ca2* signal {min)

-retinal neurons triggered by P ' [PE fluorescence 20 PE fluorescence signal
single photons In T/APC Interface
-olfactory neurons detect single

odorant molecules
-T cell recognition of foreign
peptide (shown at right)

Fluorescence
counts
°

.

4] 5
— 5um Poglton (um)

(=]

YCellular machinery
maintains physiological
status of receptors
involved in detection

g

8 888

-
(=]

¥Complex @valuationGof
agents

Calcium signaling

=]
L

70 80 90
No. of MCC—I-EX complexes in interface

Error! (Irvine et al. 2002)

o Ability to ‘integrate’ cellular or tissue response to compounds

= Detect functionality of compound in addition to its chemical presence
o i.e. tell the difference between a dead and live virus
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Design of CBBs:
= Cell-based biosensors are based on a primary transducer (the cell) and secondary transducer (device which

converts cellular/biochemical response into a detectable signal)
o Secondary transducer may be electrical or optical
o Example pathways for signal transduction:
= Toxin -> cell stress -> changes in gene expression
= Analyte -> cell metabolism -> changes in extracellular acidification rates

Transducers (Haruyama 2003)
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= Detection of arbitrary targets
o Transfect cells with receptors to introduce responsiveness of e.g. neuronal cells to a chosen compound

= Basis of electrical secondary transducers
o Electrically-excitable cells
= Example cell types

e Neurons®®
o Non-sensory neurons grown in culture outside of normal homeostasis and the

insulation of the blood-brain barrier behave in a ‘sensory’ manner (Gross 1997)
o Electrical signals play physiological role in control of secretion
e Cardiomyocytes
o Electrical signals play physiological role in control of contraction
= Generate electric signals in a substance-specific and concentration-dependent manner
= Signals generated can be monitored by microelectrodes
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Cardiomyocytes j__ 1. changes in native activity patterns

Neuronal cells — . Synaptically active (e.g. nerve) agents
1 changes in network signalling oscillations
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(GrOSS et al. 1997) FIGURE 7. Culture of spinal cord neurons for toxicological

evaluation. (Upper panel) Phase contrast image of embry-
onic day 15 rat spinal cord neurons cultured for 18 days on
a microelectrode array described in detail previously (Ref.
115). Cells were cultured under serum-free defined media
conditions on artificial self-assembled monolayer substrates
of aminosilanes. Microelectrode recordings shown were all
from the same site. As shown from a microelectrode contact
typical of this experiment, addition of glutamate (50 uM)
greatly augmented spike activity. Administration of an orga-
nophosphate, diisopropylfluorophosphate (DFP; 25 uM), re-

. vealed a marked ablation of sp 1s firing, ill g
(PancraZ|O et al- 1999) the utility of neurons cultured on microelectrode arays for
detection of toxic compounds.

Microphysiometer®""

= Measures changes in extracellular acidification rate: pH changes associated with alterations in
ATP consumption by cells (metabolism)
= Extremely sensitive readout of changes in cell metabolism
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Detecting antigens using T cells and a
microphysiometer:
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Relative advantages and disadvantages of cell-based sensors

= Pros
o Cell-based sensors may utilize the ability of cells to respond to complex mixtures of signals in a unique
way
o Receptors, channels, and enzymes maintained in a physiologically-relevant state by the machinery of the
cell

o May provide alternatives to animal testing in the future
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= Cons
o Issues of maintaining cell viability and reproducibility in measurements
o Issues of cell sources
=  Often require primary cells in current systems

Patterning cells for sensing'?

= Techniques used:
o Photolithography
o Microcontact printing (soft lithography)
o Microfluidic patterning
o Membrane lift-off
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Figure 1. Schematics of the processes of micropatterning: (a) photolithography., (b) microcontact printing, (c) microfluidic patterning
using microchannels, (d) laminar flow patterning, (e) stencil patterning.

soft lithography and self-assembled monolayers

= Techniques based on the formation of gold (or other metal)-thiol bonds and spontaneous assembly of close-
packed alkyl chain structures on a surface
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Tissue-based biosensors

= Any papers out on the liver chip? GRIFFITH LAB
In vitro toxicology studies: tissue biosensors

= Shown below is a model of the pharmacology of naphthalene13
o Tissue distribution and toxic chemistry outlined is a multi-organ, multi-compartment phenomenon
= Potential methodology: Animal-on-a-chip
o 2cmx2cm Sichip
o designed to have ratio of organ compartment size and liquid residence times physiologically realistic
o minimum 10K cells per compartment to facilitate analysis of chemicals and enzyme activity
o physiologic hydrodynamic shear stress values
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Figure 1. Reaction scheme for naphthalene and its products. Dihydrodiol GSH Conjugate
(Quick and Shuler 1999)
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Models retention of chemical in
blood and interstitial fluid

Figure4. (a) Microscopic CCA system with four chambers. The
dimensions (w x | x d) of the chambers are: lung 2 mm = 2
mm x 20 gm; liver 3.5 mm = 4.6 mm x 20 gm; other tissue 0.4
mm x 109 mum x 100 gm; fat 0,42 mm x 50.6 mm x 100 gm.
Cells are cultured as monolayers on the silicon surfaces modified
by adsorption of polylysine and collagen (b).

(Park and Shuler 2003)

In vivo detection

= Biofouling typically limits lifetime of in vivo measurements to 1-2 days
o Inflammation
o Fibrosis
o Loss of vasculature
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