Lecture 18: Biosensors

Last time:	engineering intracellular delivery Drug targeting
Today:	biosensor device classes Detection methods

Overview of biosensor technology

Classes of biosensor devices

External analysis/detection

• Large instruments

- Objectives
 - Maximum sensitivity
 - Highest throughput
 - Samples probed
 - Biochemical
 - Cell populations
 - Intracellular (single cells)

Field detection

Usually simpler, need to be more robust

In vivo detection

0

• Usually catheter/needle-based for minimal invasiveness, with detector outside body

Classes of sensor mechanisms¹

Capture-based

- Binding of labeled analyte to capture reagent
- Binding of unlabeled analyte to capture reagent triggers detectable signal

Catalysis²

- Enzymatic reaction generates a detectable product
 - Change in proton concentration, release of O₂, NH₃, CO₂
 - Release of metals, halides
 - Ion/electron transfer
 - Change in optical properties (e.g. production of a colored product)

Cell-based

- Single-cell-based
 - Binding of analyte to cell surface receptor triggers detectable signal
 - Tissue-based biosensors³
 - Binding of analyte to one cell type triggers cell-cell interactions and signaling cascades that can be detected

Applications

- Microanalysis
 - Small sample sizes, high throughput
 - Toxicology and drug testing
 - Testing drug safety
 - o Screening libraries of candidate drug compounds
- Toxin and pathogen detection

Detection Elements

Optical

- o Concept
 - Capture analyte and detect binding by optical tag or binding-sensitive optical phenomenon

Cell-based

triggers signal

Culture medium

Filter controls

cell-cell interacdtions

flow rate

Scaffold

Single-cell: Binding to cell surface receptor

Cells organized into tissue-like structures

Tissue-based: Binding to multiple cells triggers

Perfusion through "tissue"

(Griffith and Naughton, 2002)

- Capture
 Si
 - Surface-immobilized capture molecules
 - E.g. single-stranded DNA (DNA), antibodies (target antigens)

- Detection surface can either be planar or composed of capture particles
 Planar surface:
 - Identification based on x-y location of tag
 - Particle-based detection:
 - Faster kinetics of binding due to reduced distances to be traveled by analyte
 - Identification based on particle-specific labeling (challenge)
- Commercial technology example of planar detection surface: gene chips

- Composition of arrays:
 - Oligonucleotides
 - Each 'spot' composed of ~40 oligos 25 base pairs long and a matching control with one central base changed
 - Need different permutations for each gene to account for redundancy in short probe sequences
 - Must know gene sequence to prepare appropriate oligos
 - CDNA-sized fragments
 - Usually produced by PCR
 - Long fragments where each fragment uniquely identifies a gene
 - Can pack all 6000 yeast genes onto a 1.28 cm x 1.28 cm glass slide
 - Random cDNA clones can be used
- Application
 - Label mRNA from cell sample, apply to chip and allow to hybridize
 - Scan chip for bound fluorescence
- Gene chips can detect mRNA present at < 1 molecule in 100,000 (equivalent to detecting one transcript per 20 yeast cells)
- Entire yeast genome can be put on a chip

(Johnston, 1998)

References

- 1. Shah, J. & Wilkins, E. Electrochemical biosensors for detection of biological warfare agents. *Electroanalysis* **15**, 157-167 (2003).
- 2. Chaplin, M. & Bucke, C. Enzyme Technology (Cambridge Univ Press, New York, 1990).
- 3. Griffith, L. G. & Naughton, G. Tissue engineering--current challenges and expanding opportunities. *Science* **295**, 1009-14 (2002).
- 4. Lehmann, V. Biosensors: Barcoded molecules. Nat Mater 1, 12-3 (2002).
- 5. Han, M., Gao, X., Su, J. Z. & Nie, S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. *Nat Biotechnol* **19**, 631-5 (2001).
- 6. Vo-Dinh, T., Alarie, J. P., Cullum, B. M. & Griffin, G. D. Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell. *Nat Biotechnol* **18**, 764-7 (2000).
- 7. Mulchandani, A. & Rogers, K. R. Enzyme and Microbial Sensors (Humana Press, New York, 1998).
- 8. Cooper, M. A. et al. Direct and sensitive detection of a human virus by rupture event scanning. *Nat Biotechnol* **19**, 833-7 (2001).
- 9. Saphire, E. O. & Parren, P. W. Listening for viral infection. *Nat Biotechnol* **19**, 823-4 (2001).
- 10. Cooper, M. A. Optical biosensors in drug discovery. *Nat Rev Drug Discov* 1, 515-28 (2002).
- 11. McConnell, H. M. et al. The cytosensor microphysiometer: biological applications of silicon technology. *Science* **257**, 1906-12 (1992).
- McConnell, H. M., Wada, H. G., Arimilli, S., Fok, K. S. & Nag, B. Stimulation of T cells by antigen-presenting cells is kinetically controlled by antigenic peptide binding to major histocompatibility complex class II molecules. *Proc Natl Acad Sci U S A* 92, 2750-4 (1995).
- 13. Park, T. H. & Shuler, M. L. Integration of cell culture and microfabrication technology. *Biotechnology Progress* **19**, 243-253 (2003).
- 14. Quick, D. J. & Shuler, M. L. Use of in vitro data for construction of a physiologically based pharmacokinetic model for naphthalene in rats and mice to probe species differences. *Biotechnology Progress* **15**, 540-555 (1999).