Lecture 2: Molecular Design and Synthesis of Biomaterials I: Biodegradable Solid Polymeric Materials (continued)

Last time:	chemistry and physical chemistry of degrading polymeric solids for biomaterials			
Today: Theory of polymer erosion Enzymatic degradation of synthetic biomaterials Designing degradable materials				
Reading:		A. Gopferich, "Mechanisms of polymer degradation and erosion,' <i>Biomaterials</i> 17 , 103 (1996) Ratner p. 243-259		
Supplementary	y Reading:	R.J. Young and P.A. Lovell, "Introduction to Polymers," ch. 4 <i>Polymer Structure</i> pp. 241-309 (crystallization of polymers, Tm, glass transition, etc.)		

Surface vs. Bulk Hydrolysis: Göpferich's theory for polymer erosion¹⁻⁴

Biodegradable solids may have differing *modes* of degradation:

Surface erosion – degradation from exterior only with little/no water penetration into bulk Bulk erosion – water penetrates entire structure and degrades entire device simultaneously

Fig. 1. Schematic illustration of the changes a polymer matrix undergoes during surface erosion and bulk erosion.

Polymers hydrolyzing by mechanisms II or III can be either surface or bulk eroding.⁵⁻⁷

Assuming that a polymer is water insoluble (initially) and that hydrolysis is the only mechanism of breakdown, the factors listed above all vary two rates of importance:

rate of water diffusion into polymer

rate of chain cleavage by water ions

The balance of these rates determines whether a polymer erodes from the surface in or by simultaneous degradation throughout the material:

Comparing velocities of water diffusion and chain cleavage:

Accounting for rate of water diffusion: Time required for water to diffuse a mean distance <x> into the solid polymer:

(1) $t_{diff} = \langle x \rangle^2 \pi / 4D_{H2O}$ D_{H2O} = effective diffusivity of water in polymer See Atkins Phys. Chem p. 770 for derivation

Random walk:

Fig. 10.18 One possible path of a random walk in three dimensions. In this general case, the step length is also a random variable.

(Atkins⁸)

Mean distance from origin traveled by water molecule after time t = <r> = $(2D_{H2O}t)^{1/2}$ Mean distance traveled in x direction = <x> = $2(D_{H2O}t_{diff}/\pi)^{1/2}$ EXPLAIN

Number of bonds in depth <x>:

(2) $n = \langle x \rangle (bonds/cm^3)^{1/3} = \langle x \rangle (N_{Av}\rho/M_0)^{1/3}$ $N_{Av} = Avogadro's number$ $\rho = polymer density$ $M_0 = molecular weight of polymer repeat unit$

Accounting for rate of chain cleavage (k): probability that a bonds breaks in the interval (0,t):

(3) $p(t) = ke^{-kt}$

where we have assumed that chain cleavage is a random event following Poisson kinetics

k = rate constant for bond hydrolysis

Therefore the mean lifetime of a single bond is given by:

(4)
$$< t_c > = \prod_{0}^{d} p(t) dt = \prod_{0}^{d} e^{-kt} dt = \frac{1}{k} (kt+1) e^{-kt} \Big|_{0}^{d} = \frac{1}{k}$$

Time to degrade *n* bonds is a zero-order waiting time distributed according to a zero-order Erlang distribution:

Lecture 2 – Biodegradable Solid Polymers2 of 12

Mechanism (surface vs. bulk) is controlled by ratio of time for diffusion to time for hydrolysis, a dimensionless parameter analogous to a Deborah number:

Erosion number = ε

(5) $\varepsilon \equiv t_{diff}/\langle t_c(n) \rangle = \langle x \rangle^2 k_c \pi / [4D_{H2O}\{\ln \langle x \rangle + (1/3)\ln (N_{Av}\rho/M_0)\}]$

• note <x> in denominator In should have same units as ρ , i.e. cm if ρ is in g/cm³

If <x> is replaced by the total thickness of a degrading sample, we can predict the mechanism of erosion:

- $\epsilon > 1$ bulk erosion
- $\epsilon = 1$ change in erosion mechanism
- $\epsilon < 1$ surface erosion

Fig. 2. Dependence of the erosion number, ε , on the diffusivity of water inside the polymer, D_{eff} , the dimensions of a polymer matrix, L, and the polymer bond reactivity, λ , calculated from equation 7. The white plane represents the area of surface erosion, the gray one the area of bulk erosion.

mass loss is linear for surface-eroding devices only

Table 1 Estimated values of ε and L_{critical} for selected degradable polymers

Chemical structure	Polymer	λ (s ⁻¹)	E	$L_{\text{critical}}^{\text{b}}$	
	Poly(anhydrides)	1.9×10^{-3} Ref. [30]	11,515	75 µm	
	Poly(ketal)	6.4×10^{-5} Ref. [30]	387	0.4 mm	
	Poly(ortho esters)	4.8×10^{-5} Ref. [30]	291	0.6 mm	
	Poly(acetal)	2.7×10^{-8} Ref. [30]	0.16	2.4 cm	
$\begin{bmatrix} k \end{bmatrix}$ $- O - (CH_2)_5 - C +$	Poly(e-caprolactone)	9.7×10^{-8} Ref. [31]	0.1	1.3 cm	
[] [-,-,-,-,-,-]	$Poly(\alpha\text{-}hydroxy\text{-}esters)$	$6.6 \times \cdot 10^{-9}$ Ref. [30]	4.0×10^{-2}	7.4 cm	
[ċн₃] [́н ́н o] - ́N-ċ-ċ	Poly(amides)	2.6×10^{-13} Ref. [30]	1.5×10^{-6}	13.4 m	

^aFor a 1 cm thick device, $D = 10^{-8} \text{ cm}^2 \text{ s}^{-1}$ (estimated from Ref. [32]) and $\ln \left[\sqrt[3]{M_n/N_A(N-1)\rho} \right] = -16.5$. ^b $D = 10^{-8} \text{ cm}^2 \text{ s}^{-1}$ (estimated from Ref. [32]) and $\ln \left[\sqrt[3]{M_n/N_A(N-1)\rho} \right] = -16.5$.

Fig. 3. Critical thickness, L_{critical} , that a polymer device has to exceed to undergo surface erosion (calculated from Eq. (7), data shown in Table 1).

Experimental demonstration of theory:

Transition of PLGA erosion from bulk to surface mode: degraded at basic pH (>12)- increased k_c , thus decreasing ϵ << 1

Bulk (normal erosion at pH 7.4):

Fig. 4. Erosion profiles of poly(α -hydroxy esters) at pH 7.4: (a) PLA₅₀11h (\bigcirc) and PLA5017 (\Box), (b) PLA₂₅GA₅₀8h (\blacklozenge). PLA₂₅. GA₅₀14 (\blacklozenge) and PLA₂₅GA₅₀47h (\blacksquare).

(•) and PLA₅₀17 (\Box), PLA₂₅GA₅₀47h (\blacksquare).

Surface (pH > 12):

SEM shown previously (Fig. 13) confirms transition to surface mode

Synthesizing biodegradable macromolecules to tailor properties

Approaches to molecular design

- Copolymerization
 - Control polymer hydrophobicity -> degradation rate
 - Control concentration of reactive groups
 - o Alter biocompatibility
 - What are the degradation products? Acidity/basicity? Toxicity? Biological effects?

• Vary Tm, Tg⁹, (mechanical properties)

(SLIDE)

Table 3. Properties of poly(CL-co-DXO), poly(VL-co-DXO), and poly(LLA-co-DXO)				
Sample	% DXO in copolymer	Tg(DSC) [°C]	T _m (DSC)["C]	
CD50	50	-56.8	27.8	
CD60	41	-57.8	27.2	
CD70	29	-55.5	36.0	
CD80	18	-61.0	42.8	
CD90	8	-65.6	50.5	
CD100	0	-65.9	57.6	
VD70	33	-56.7	28.0	
VD80	25	-56.1	37.7	
VD90	7	-59.9	46.0	
VD100	0	-63.4	57.5	
LD70	28	23.1	154.1	
LD85	13	41.1	178.8	
LD100	0	58.5	183.8	

Data adopted from [134]

wt.FRACTION LACTION FIGURE 2. Variation of glass transition temperature (T_g) of copolymers of caprolactone and DL-lactide as a function of DL-lactide content. Solid line is calculated relationship, based on Fox equation (from Reference 8).

Reactions on polymers/Polymer functionalization

Controlling Molecular Architecture

We won't undertake an exhaustive description, but some of the important methods to be aware of:

- Condensation polymerization
 - Not very efficient, produces low molecular weight polymers (usually \leq 10K g/mole)

$$\begin{array}{c} \mathsf{CH}_3 \mathsf{O} \\ \mathsf{HO}\text{-}\mathsf{CH}\text{-}\mathsf{C}\text{-}\mathsf{O}\mathsf{H} \end{array} \xrightarrow{\Delta} \begin{array}{c} \mathsf{CH}_3 \mathsf{O} \\ \mathsf{-}\mathsf{H}_2\mathsf{O} \end{array} \xrightarrow{\mathsf{CH}_3 \mathsf{O}} \\ \mathsf{-}(\mathsf{C}\mathsf{H}\text{-}\mathsf{C}\text{-}\mathsf{O})_{\mathsf{n}}^{-} \end{array}$$

- Has been found useful for growing dendritic polymers:
 - Prepared using AB₂-type monomers

(SLIDE)

Scheme 22. a) The divergent growth approach for the preparation of dendritic polyesters. b) The divergent approach for the preparation of dendrimer having 16-hydroxy groups

- Ring-opening polymerization
 - o Catalysis by stannous octoate (tin 2-ethyl hexanoate, FDA-approved)
 - Useful for polyesters (PLA, PCL, PGA, and their copolymers)¹⁰
 - Polymerization initiates from alcohol co-initiator groups by a coordination-insertion mechanism:

Lecture 2 – Biodegradable Solid Polymers7 of 12

Spring 2003

example insertion:

Proposed mechanisms: (on board)

For lactide and glycolide, each ring monomer opens to 2 lactic acid/glycolic acid moieties:

FIg.8. The chemical structure of glycolide and the resulting repeating unit

A variety of similar catalysts can be used to polymerize lactone ring monomers: (SLIDE)

β-propiolactone	°	β-PL
γ-butyrolactone	Č	γ-BL
β-butyrolactone	оСн_3	β-BL
δ-valerolactone	°	δ-VL
e-caprolactone	Č	ε-CL
1,5-dioxepan-2- one	Ç	DXO
R=H; glycolide	R	GA
R=CH ₃ ; lactide	° ↓ R	LA

Table 1. Structure and designation of various lactones

Multi-alcohol initiators permit synthesis of multi-armed polymers:

- Living ring-opening polymerization
 - Coordination-insertion catalysts: e.g. aluminum isopropoxide¹⁰

Provide control over molecular weight and MWD:

Allows the synthesis of block copolymers:

Hg.5. A schematic presentation of an ABA tri-block copolymer with two A-blocks (gray circles with dark centers) and one B-block (gray circles with light centers)

 Monomers polymerized sequentially, when block A is formed, monomer B is injected, etc. pendant peptide groups

Copolymerization of ring peptides with biodegradable monomers .

NaNO

D-Alanine

e.g. Barrera et al¹²⁻¹⁴

- monomers must be synthesized from scratch 0
- bulky substituents make for highly inefficient ring-opening polymerization¹⁵ 0

SOC

CO₂H

CHCI3, reflux NEt/ Pr2

Table 2. Effect of	the Concentration of 5 on	
Polymerizations Condu	acted at 136 °C for 48 h Using	t a
Catalyst to Mon	nomer Ratio of 1/1000 ^a	

mole % 5 ^b		vield			Ta	T_{m}
reaction	copolymer	(%)	$M_{\rm n}$	$M_{ m w}$	(°Ĉ)	(°Ĉ)
0.0	0.0	85	132 000	223 000	61.6	169.4
5.3	2.6	71	14 500	36 700	57.5	155.3°
10.5	4.4	57	8 400	$23\ 000$	55.8	152.8 ^c
27.7	10.6	20	12 300	15 000	52.4	none
100.0		0				

^a All the molecular weight data were obtained on protected copolymers. ^b Determined by ¹H NMR. Incorporated of 10 mol % 5 actually yields only 5 mol % lysine since each molecule of 5 contains one lysine residue and one lactic acid residue. ^c Indicates 2 or more melting endotherms.

- Network polymerization •
 - Photopolymerization of liquid precursors 0
 - E.g. polyanhydrides^{16,17}
 - Allows formation of polymeric solids in situ from liquid precursors
 - Useful for dental restorations, bone fixation, tissue engineering
 - Curable through fiber optics or by shining light through tissue
 - UV or visible light initiators available

Fig. 1. Dimethacrylated anhydride monomers, methacrylated sebacic acid (MSA), methacrylated 1,3-bis(p-carboxyphenoxy) propane (MCPP) and methacrylated 1,6-bis(p-carboxyphenoxy) hexane (MCPH)), as well as a general polymerization and degradation scheme.

Fig. 3. Effect of light intensity on the rate of photopolymerization as a function of time for MSA polymerized with 0.5 wt% CQ and 0.5 wt% TEA.

cholesterol a vital component of cell membranes; stearic acid a natural fatty acid

References

- 1. Gopferich, A. & Langer, R. Modeling of Polymer Erosion. *Macromolecules* **26**, 4105-4112 (1993).
- 2. Gopferich, A. Polymer bulk erosion. *Macromolecules* **30**, 2598-2604 (1997).
- 3. Gopferich, A. Mechanisms of polymer degradation and erosion. *Biomaterials* **17**, 103-14 (1996).
- 4. von Burkersroda, F., Schedl, L. & Gopferich, A. Why degradable polymers undergo surface erosion or bulk erosion. *Biomaterials* **23**, 4221-31 (2002).
- 5. Agrawal, C. M. & Athanasiou, K. A. Technique to control pH in vicinity of biodegrading PLA-PGA implants. *J* Biomed Mater Res **38**, 105-14 (1997).
- 6. Lu, L., Garcia, C. A. & Mikos, A. G. In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films. *J Biomed Mater Res* **46**, 236-44 (1999).
- 7. Tsuji, H. & Nakahara, K. Poly(L-lactide). IX. Hydrolysis in acid media. *Journal of Applied Polymer Science* **86**, 186-194 (2002).
- 8. Atkins, P. *The Elements of Physical Chemistry* (W.H. Freeman, New York, 1997).
- 9. Pitt, C. G., Marks, T. A. & Schindler, A. in *Controlled Release of Bioactive Materials* (ed. Baker, R. W.) 19-43 (Academic Press, New York, 1980).
- 10. Albertsson, A. C. & Varma, I. K. in *Degradable Aliphatic Polyesters* 1-40 (2002).
- 11. Stridsberg, K. M., Ryner, M. & Albertsson, A. C. in Degradable Aliphatic Polyesters 41-65 (2002).
- 12. Barrera, D. A., Zylstra, E., Lansbury, P. T. & Langer, R. Synthesis and RGD peptide modification of a new biodegradable copolymer: poly(lactic acid-co-lysine). *J. Am. Chem. Soc.* **115**, 11010-11011 (1993).
- 13. Barrera, D. A., Zylstra, E., Lansbury, P. T. & Langer, R. Copolymerization and degradation of poly(lactic acid-colysine). *Macromolecules* **28**, 425-432 (1995).
- 14. Cook, A. D. et al. Characterization and development of RGD-peptide-modified poly(lactic acid-co-lysine) as an interactive, resorbable biomaterial. *J Biomed Mater Res* **35**, 513-23 (1997).
- 15. Ivin, K. J. *Ring-opening polymerization* (Elsevier, London, 1984).
- 16. Burkoth, A. K. & Anseth, K. S. A review of photocrosslinked polyanhydrides: in situ forming degradable networks. *Biomaterials* **21**, 2395-404 (2000).
- 17. Burkoth, A. K., Burdick, J. & Anseth, K. S. Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior. *J Biomed Mater Res* **51**, 352-9 (2000).